Investigation of 0vββ with Bolometers

CUORE and Beyond

Karsten Heeger Yale University

on behalf of the CUORE Collaboration

CUORE

- 988 TeO₂ crystals run as a bolometer array
 - 5x5x5 cm³ crystal, 750 g each
 - 19 Towers; 13 floors; 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10²⁷ ¹³⁰Te nuclei

- Excellent energy resolution of bolometers
- New pulse tube dilution refrigerator and cryostat
- Radio-pure material and clean assembly to achieve low background at region of interest (ROI)

CUORE at LNGS

Gran Sasso National Laboratory

Average depth ~ 3600 m.w.e.

 μ : 3 x 10⁻⁸ μ /s/cm²

n < 10 MeV: 4 x 10⁻⁶ n/s/cm²

 γ < 3 MeV: 0.73 γ /s/cm²

CUORE Hut

TeO₂ Bolometers for 0vββ Search

 $\Delta T_{crystal} \sim 10$ - 20 $\mu K/MeV$

- ¹³⁰Te is a good 0vββ source
 - high isotopic abundance
 - high Q-value
- TeO₂ bolometer provides excellent energy resolution (0.2% at Q-value)

CUORE 0vββ Search

 $T_{1/2}^{0\nu\beta\beta}$ > 2.8 × 10²⁴ y (90% C.L.) Surpass Cuoricino w/ ~1-yr data

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 300 - 710 \text{ meV}$

Projected

 $T_{1/2}^{0\nu\beta\beta} > 9.5 \times 10^{25} \text{ yr (90\% C.L.)}$

 $\langle m_{\beta\beta} \rangle_{90\% \text{ C.L.}} = 51 - 133 \text{ meV}$

CUORICINO Result

Half-life limit (130 Te) $\geq 2.8 \times 10^{24}$ y (90% C.L.)

Background: 0.169 ± 0.006 counts/keV/kg/y

Upper limit, Majorana mass: $m_{v_e} < 300 - 710 \text{ meV}$

No evidence of neutrinoless double beta decay in ¹³⁰Te.

CUORE: An ultrapure TeO₂ Crystal Array

Bulk activity 90% C.L. upper limits:

 $8.4 \cdot 10^{-7} \; \text{Bq/kg} \; (^{232}\text{Th}), \; 6.7 \cdot 10^{-7} \; \text{Bq/kg} \; (^{238}\text{U}), \; 3.3 \cdot 10^{-6} \; \text{Bq/kg} \; (^{210}\text{Po})$

Surface activity 90% C.L. upper limits:

T1

2 · 10-9 Bq/cm² (232Th), 1 · 10-8 Bq/cm² (238U), 1 · 10-6 Bq/cm² (210Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching
- Benchmarked in dedicated bolometer run at LNGS
 - Residual ²³²Th / ²³⁸U surface contamination of Cu: < 7 · 10⁻⁸ Bq/ cm²
- Validated by CUORE-0
- All parts stored underground, under nitrogen after cleaning

CUORE Detector Towers

Assembly of all 19 towers is complete

CUORE: Cryogenic Systems & Commissioning

Phased Commissioning

Phase I: 4K system check

- Outer/Inner vacuum chamber test
- Cryogenic verification of detector calibration system
- Commissioning test of DU

Phase II: full cryostat vessel check

- Full assembly of cryostat
- Cool down of cryostat
- Integration of test tower
- Detector wiring
- calibration system

Preparing for Phase III: integrated cryogenic test

- with lead shields
- wiring
- full calibration system

6mK stable base temperature achieved in October 2014

CUORE-0 Status and Projections

CUORE-0

- single CUORE-like tower ~11 kg of ¹³⁰Te running in CUORICINO shielding & cryostat since March 2013
- Validate new cleaning and assembly procedures for CUORE
- stand-alone DBD experiment
- CUORE-0 phase I: first results in EPJC 74, 2956 (2014).
- CUORE-0 phase II: data taking w/ improved detector operation condition, improved analysis.
- Reach CUORICINO sensitivity with ~ 1yr lifetime (unblind in spring 2015)

10

CUORE-0 Energy Resolution

- Total ²³²Th activity of 100 Bq via two thoriated wires outside the cryostat
- Improved detector operation in Phase II. CUORE goal of 5 keV FWHM near ROI achieved. Previously 5.7 keV.

CUORE-0 Background Measurement

Eur. Phys. J. C 74, 2956 (2014)

	0vββ region [c/keV/kg/yr]	2700-3900 keV * [c/keV/kg/yr]
CUORICINO ε=83%	0.153 +/- 0.006	0.110 +/- 0.001
CUORE-0 ε =78%	0.063 +/- 0.006	0.020 +/- 0.001

* excluding the 190 Pt peak region

- α-dominated bkg: 6-fold reduction
 - Ultra-cleaning of CUORE-0 Cu surfaces
- 2.5-fold reduction of bkg in ROI
 - stringent radon control in COURE-0
- β/y bkg from cryostat ²³²Th remains the same
- Consistent with the Cuoricino bkg model

CUORE Background Projections

- CUORE-0: provides bench mark for remaining background with new assembly & crystal/Cu cleaning protocols
- CUORE projections: results of CUORE-0 + screening campaign results ->

Conservatively extrapolate measured α-region bkg from CUORE-0 assuming all bkg is from ²³⁸U/²³²Th/²¹⁰Po individually

CUORE-0 0vββ Region

Analysis improvements underway

- noise reduction decorrelation
- heater-less gain stabilization
- calibration, pulse-shape, and multiplicity-cuts
- background model
- low-energy PSA for dark matter searches

EPJC 74, 2956 (2014)

Region of Interest was blinded by "salting": exchange a small (and **blinded**) fraction of the events in ²⁰⁸Tl peak with events in the 0vDBD region to produce an artificial peak.

Unblinding in Spring 2015

CUORE Sensitivity

- CUORE sensitivity goal $T_{1/2}^{0\nu\beta\beta} > 9.5 \times 10^{25} \text{ yr} @ 90\% \text{ C.L.}$
- Effective Majorana mass 51 133 meV @ 90% C.L.
 - Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/ (keV·kg·yr), 5 years of live time.

arXiv:1109.0494

CUORE - What a signal might look like...

5 years lifetime of CUORE, assuming a background index of 0.01 counts/kg/keV/y,

spectrum is fitted with a flat background plus 3 peaks (60 Co, $0v\beta\beta$ and 208 Tl).

Beyond CUORE: 130Te Enrichment

- Natural next step for CUORE
 - Increase # of parent nuclei, not the detector mass (# of background events)
- 130Te enrichment is relatively cheap at \$17K/kg
 - Compared to ⁷⁶Ge enrichment at \$100/g
- 500 gram of enriched ¹³⁰Te metal is sent to SICCAS for enriched crystal growth.

Current gen.

goal of next gen. experiments

- F_N Nuclear figure of merit: nuclear matrix element x phase
- E Detection efficiency

t Live time [year]

sotopic abundance

- b Background [< 0.01/kg/keV/
- M Detector total mass [kg]
- δE Energy resolution [keV]

Beyond CUORE: Particle ID with Light Detectors

phonon+photon

- Cherenkov light or scintillation to distinguish α from β/γ (130TeO₂, Zn82Se, 116CdWO₄, and Zn100MoO₄₎
- More rejection power needed: 99.9% α background suppression. Light detector R&D for better resolution.
 - -R&D on TES in US
 - -R&D on MKID in Italy
 - -R&D on NTD/Luke effect in France/LNGS
- Background free search.

$$m_{\beta\beta} \sim (M \cdot t)^{-1/2}$$
, not $(M \cdot t)^{-1/4}$

Beyond CUORE: Particle Identification

Background Rejection with Particle ID

CUORE Collaboration Eur.Phys.J. C74 (2014) 10, 3096

²³⁸U with 5μm depth profile on TeO₂ and detector copper surfaces; assume 5σ α-β separation

Beyond CUORE: Different Isotopes

- Bolometer utilizes only the low heat capacity of dielectric crystal.
- High efficiency and flexibility in candidate isotope choices.
- Especially valuable for discovery confirmations in different isotopes.

90% sensitivity limits

Crystal	Exposure	half-life sensitivity	$ m_{ee} _S$
	$[ton \cdot y]$	$[10^{27}y]$	[meV]
ZnSe	5	3.3	9 - 26
	10	6.5	6 - 18
CdWO_{4}	5	1.5	14 - 26
	10	3.0	10 - 18
${\rm ZnMoO_4}$	5	0.9	11 - 32
	10	1.4	9 - 25
${ m TeO_2}$	5	3.4	8 - 22
	10	6.8	6 - 16

ate [c/(ton y)]

Summary & Outlook

CUORE builds on the success of CUORICINO and its predecessors

- CUORE-0 has been running since March 2013
 - confirms the Cuoricino background model and successful background mitigation
 - goal of < 5 keV FWHM for ROI energy resolution reached
 - data taking for 0vββ

CUORE

- tower assembly is complete and cryogenic system commissioning underway.
- physics data taking expected to start in late 2015.
- with 206 kg of ¹³⁰Te and 5 keV energy resolution, is able to reach 51-133 meV effective Majorana mass.
- Beyond CUORE: R&D effort is underway. Large bolometers offer path towards exploring the inverted hierarchy.
 - enrichment– muon veto
 - light detectionmaterials screening
 - -different isotopes

CUORE Collaboration

